Exercise 3

(a) Find a formula that describes the function in Figure 9.

Figure 9 for Exercise 3.
(b) Describe the set of points where f is continuous. Compute $f(x+)$ and $f(x-)$ at all points x where f is not continuous. Is the function piecewise continuous?
(c) Compute $f^{\prime}(x)$ at the points where the derivative exists. Compute $f^{\prime}(x+)$ and $f^{\prime}(x-)$ at the points where the derivative does not exist. Is the function piecewise smooth?

Solution

Part (a)

Notice that the function repeats itself every unit, so the period is 1 .

$$
f(x)= \begin{cases}1 & \text { if } 0 \leq x<\frac{1}{2} \\ 0 & \text { if } \frac{1}{2} \leq x<1 \\ f(x+1) & \text { otherwise }\end{cases}
$$

Part (b)

The function is continuous everywhere except at every half integer.

$$
\left\{x \left\lvert\, x \neq \frac{k}{2}\right., \quad k=0, \pm 1, \pm 2, \ldots\right\}
$$

From the left the limit of the function at the discontinuities is

$$
\lim _{x \rightarrow\left(\frac{k}{2}\right)^{-}} f(x)=\left\{\begin{array}{ll}
1 & \text { if } k \text { is odd } \\
0 & \text { if } k \text { is even }
\end{array},\right.
$$

and from the right the limit of the function at the discontinuities is

$$
\lim _{x \rightarrow\left(\frac{k}{2}\right)^{+}} f(x)=\left\{\begin{array}{ll}
0 & \text { if } k \text { is odd } \\
1 & \text { if } k \text { is even }
\end{array} .\right.
$$

The function is piecewise continuous on $0 \leq x \leq 1$ because $f(0+)$ and $f(1-)$ exist, and there are only a finite number of discontinuities in $0<x<1$ that each have existing one-sided limits.

Part (c)

The derivative of f is undefined wherever f is discontinuous.

$$
\begin{aligned}
f^{\prime}(x) & = \begin{cases}\frac{d}{d x}(1) & \text { if } 0<x<\frac{1}{2} \\
\frac{d}{d x}(0) & \text { if } \frac{1}{2}<x<1 \\
f^{\prime}(x+1) & \text { otherwise }\end{cases} \\
& = \begin{cases}0 & \text { if } 0<x<\frac{1}{2} \\
0 & \text { if } \frac{1}{2}<x<1 \\
f^{\prime}(x+1) & \text { otherwise }\end{cases} \\
& =0, \quad x \neq \frac{k}{2}, \text { where } k=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

Compute the limits of the derivative at the discontinuities.

$$
\begin{aligned}
& \lim _{x \rightarrow\left(\frac{k}{2}\right)^{-}} f^{\prime}(x)=0 \\
& \lim _{x \rightarrow\left(\frac{k}{2}\right)^{+}} f^{\prime}(x)=0
\end{aligned}
$$

The function's derivative is piecewise continuous on $0 \leq x \leq 1$ because $f^{\prime}(0+)$ and $f^{\prime}(1-)$ exist, and there are only a finite number of discontinuities in $0<x<1$ that each have existing one-sided limits. Therefore, f is piecewise smooth on $0 \leq x \leq 1$.

